Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this work, we consider a setting where the goal is to achieve adversarial robustness on a target task, given only unlabeled training data from the task distribution, by leveraging a labeled training data from a different yet related source task distribution. The absence of the labels on training data for the target task poses a unique challenge as conventional adversarial robustness defenses cannot be directly applied. To address this challenge, we first bound the adversarial population 0-1 robust loss on the target task in terms of (i) empirical 0-1 loss on the source task, (ii) joint loss on source and target tasks of an ideal classifier, and (iii) a measure of worst-case domain divergence. Motivated by this bound, we develop a novel unified defense framework called Divergence-Aware adveRsarial Training (DART), which can be used in conjunction with a variety of standard UDA methods; e.g., DANN. DART is applicable to general threat models, including the popular \ell_p-norm model, and does not require heuristic regularizers or architectural changes. We also release DomainRobust, a testbed for evaluating robustness of UDA models to adversarial attacks. DomainRobust consists of 4 multidomain benchmark datasets (with 46 source-target pairs) and 7 meta-algorithms with a total of 11 variants. Our large-scale experiments demonstrate that, on average, DART significantly enhances model robustness on all benchmarks compared to the state of the art, while maintaining competitive standard accuracy. The relative improvement in robustness from DART reaches up to 29.2% on the source-target domain pairs considered.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Larochelle, Hugo; Hadsell, Raia; Cho, Kyunghyun (Ed.)In deep learning, leveraging transfer learning has recently been shown to be an effective strategy for training large high performance models with Differential Privacy (DP). Moreover, somewhat surprisingly, recent works have found that privately training just the last layer of a pre-trained model provides the best utility with DP. While past studies largely rely on using first-order differentially private training algorithms like DP-SGD for training large models, in the specific case of privately learning from features, we observe that computational burden is often low enough to allow for more sophisticated optimization schemes, including second-order methods. To that end, we systematically explore the effect of design parameters such as loss function and optimization algorithm. We find that, while commonly used logistic regression performs better than linear regression in the non-private setting, the situation is reversed in the private setting. We find that least-squares linear regression is much more effective than logistic regression from both privacy and computational standpoint, especially at stricter epsilon values (ε < 1). On the optimization side, we also explore using Newton’s method, and find that second-order information is quite helpful even with privacy, although the benefit significantly diminishes with stricter privacy guarantees. While both methods use second-order information, least squares is more effective at lower epsilon values while Newton’s method is more effective at larger epsilon values. To combine the benefits of both methods, we propose a novel optimization algorithm called DP-FC, which leverages feature covariance instead of the Hessian of the logistic regression loss and performs well across all ε values we tried. With this, we obtain new SOTA results on ImageNet-1k, CIFAR-100 and CIFAR-10 across all values of ε typically considered. Most remarkably, on ImageNet-1K, we obtain top-1 accuracy of 88% under DP guarantee of (8, 8 ∗ 10−7) and 84.3% under (0.1, 8 ∗ 10−7).more » « less
An official website of the United States government

Full Text Available